A Level-Set Method for Two-phase Flows with Moving Contact Line and

发布时间:2013-08-09 浏览次数:79
报告题目: A Level-Set Method for Two-phase Flows with Moving Contact Line and  Insoluble Surfactant
报告人:徐建军 副教授(湘潭大学数学与计算科学学院 )
时间:8月5日下午3:00-4:00
地点:力学一楼239 

报告人简介:
徐建军,安徽潜山人。2001年8月获美国Temple大学博士学位(计算数学方向)。之后分别在美国加州大学尔湾分校和加拿大西蒙菲莎大学任研究员。2009年9月回国在湘潭大学数学与计算科学学院任教。研究领域为大规模科学计算,复杂流体特别是界面流的数值计算模拟,并行计算。

报告简介:

A level-set method for two-phase flows with moving contact line  and insoluble surfactant is presented. The mathematical model consists of the Navier-Stokes equation for the flow field, a convection-diffusion  equation for the surfactant concentration, together with the Navier boundary condition and a condition for the dynamic contact angle derived by Ren et al.  (Phys. Fluids, 22 (2010) 102103). The numerical method is based on the level-set continuum surface force method for two-phase flows with surfactants developed by Xu et al. ( J. Comput. Phys., 231 (2012) 453) with some cautious treatment for the boundary conditions. The numerical method consists of three components: a flow solver for the velocity field, a solver for the surfactant concentration, and a solver for the level-set function. In the flow solver, the surface force is dealt with using the continuum surface force model. The unbalanced Young stress at the moving contact line is incorporated into the Navier boundary condition. A convergence study of the numerical method and a parametric study are presented. The influence of surfactant on the dynamics of the moving contact line is illustrated using examples. The capability of the level-set method to handle complex geometries is demonstrated by simulating a pendant drop detaching from a 
wall under gravity.